Results from MiniBooNE

NO-VE IV, International Workshop on: Neutrino Interactions in Venice April 15-18, 2008 Byron Roe University of Michigan for the MiniBooNE collaboration

Outline

- 1. Review of MiniBooNE experiment
- 2. Oscillation results
- 3. Low energy anomaly
- 4. MiniBooNE-NUMI
- 5. Neutrino cross sections
- 6. Anti-neutrino cross sections
- 7. Publications

Review of the MiniBooNE Experiment

The MiniBooNE Collaboration

A. A. Aguilar-Arevalo, A. O. Bazarko, S. J. Brice, B. C. Brown,
L. Bugel, J. Cao, L. Coney, J. M. Conrad, D. C. Cox, A. Curioni,
Z. Djurcic, D. A. Finley, B. T. Fleming, R. Ford, F. G. Garcia,
G. T. Garvey, J. A. Green, C. Green, T. L. Hart, E. Hawker,
R. Imlay, R. A. Johnson, P. Kasper, T. Katori, T. Kobilarcik,
I. Kourbanis, S. Koutsoliotas, J. M. Link, Y. Liu, Y. Liu,
W. C. Louis, K. B. M. Mahn, W. Marsh, P. S. Martin, G. McGregor,
W. Metcalf, P. D. Meyers, F. Mills, G. B. Mills, J. Monroe,
C. D. Moore, R. H. Nelson, P. Nienaber, S. Ouedraogo,
R. B. Patterson, D. Perevalov, C. C. Polly, E. Prebys, J. L. Raaf,
H. Ray, B. P. Roe, A. D. Russell, V. Sandberg, R. Schirato,
D. Schmitz, M. H. Shaevitz, F. C. Shoemaker, D. Smith, M. Sorel,
P. Spentzouris, I. Stancu, R. J. Stefanski, M. Sung, H. A. Tanaka,
R. Tayloe, M. Tzanov, M. O. Wascko, R. Van de Water, D. H. White,
M. J. Wilking, H. J. Yang, G. P. Zeller, E. D. Zimmerman

2 National Laboratories, 14 Universities, 77 Researchers

University of Alabama Bucknell University University of Cincinnati University of Colorado Columbia University Embry Riddle University Fermi National Accelerator Laboratory Indiana University Los Alamos National Laboratory Louisiana State University University of Michigan Princeton University Saint Mary's University of Minnesota Virginia Polytechnic Institute Western Illinois University Yale University

Apr. 17, 08

The MiniBooNE design strategy...must make v_{μ}

- Start with 8 GeV proton beam from FNAL Booster
- Add a 174 kA pulsed horn to gain a needed x 6
- Requires running v (not anti-v) to get flux
- Pions decay to v with E_v in the 0.8 GeV range
- Place detector to preserve LSND L/E: MiniBooNE: (0.5 km) / (0.8 GeV) LSND: (0.03 km) / (0.05 GeV)
- 5.58×10^{20} P.O.T. total; up to 5×10^{12} p/pulse at up to 4 Hz

$$v_{\mu} = 93.5\%, v_{e} = 0.5\%, \overline{v}_{\mu} = 6\%$$

The MiniBooNE Detector

- 541 meters downstream of target
- 3 meter overburden of dirt
- •12 meter diameter sphere
 - (10 meter "fiducial" volume)
- •Filled with 800 t of pure mineral oil (CH₂-density 0.86, n=1.47)
 - (Fiducial volume: 450 t)
 - 1280 inner 8" phototubes-10% coverage, 240 veto phototubes
 - (Less than 2% channels failed during run)

MiniBooNE First Results show no evidence for $v_{\mu} \rightarrow v_{e}$ appearance-only oscillations

Energy-fit analysis: solid: TB dashed: BDT

Independent analyses are in good agreement. (Different reconstructions And different particle id)

MiniBooNE first results arXiv:0704.1500 Phys. Rev. Lett. 98, 231801

Apr. 17, 08

The $v_eBDT + v_eTBL + v_\mu CCQE$ results:

The combination of the three samples gives a increase in coverage in the region $\Delta m^2 < 1 \text{ eV}^2$.

Differences in the details are due to the specific fluctuations in the three data samples and the interplay with correlations among them.

The combination yields a consistent result.

10%-30% improvement in 90% C.L. limit below ~1eV².

Global Fit Results (H. Ray)

- Combine results from several experiments--LSND, MiniBooNE, Karmen and Bugey
- Convert each to a chisq. However, only Delta chisq is available.
- Do fits with this. Omits effect of goodness-offit of individual experiments
- 2-D fits--both oscillation parameters fitted
- 1-D fits-- only sinsq theta fit. For each deltamsq asks: " If this is the true deltamsq, what is the compatibility?"

Global Fit Results-2D Fits

- The star is the point of maximum compatibility
- LSND, KARMEN2, MB + BUGEY

Global Fits to Experiments

LSND	KARMEN 2	MB	Bugey	Max Compat %	Delta M2	Sinsq theta
Х	Х	X		25.36	0.072	0.256
X	X	Х	X	3.94	0.242	0.023
X		X		16.00	0.072	0.256
X		X	X	2.14	0.253	0.023
	X	X		73.44	0.052	0.147
	X	X	X	27.37	0.221	0.012
pr. 17, 08			Byron Roe			

Global Fits Results--1D

Byron Roe

Low Energy Anomaly

oscillation analysis: **Results in April 2007**

track-based analysis:

Counting Experiment: 475<E,<1250 MeV data: 380 events expectation: 358 ± 19 (stat) ± 35 (sys)

Phys. Rev. Lett. 98, 231801 (2007)

10⁻¹

10

1

10⁻¹

10⁻²

Extending the analysis to lower energies

- Excess persists in 200–300 MeV bin
- Significance (stat + syst error)
 - → 475-1250 MeV, 22 ± 40
 - ▶ 300-475 MeV, 96 ± 26
 - → 200-300 MeV, 91 ± 31
- Looking to bring out a full update for the summer conferences

Could anomaly be background?

- Instrumental background? NO
- Track and Boosting analyses consistent? YES
- Is excess electron/gamma ray like? YES
- Dirt or Delta(1232) radiative decays? NO
- Pion or muon mis-id (including brem.)? NO
- Photonuclear process. Excess down(~~20%)
- More comprehensive hadr. errors and better handling of pi+/interactions. Excess down
- Modification of pi0 background calculation. Excess down
- Improved meas. of nu induced pi0's. Excess up
- Better handling of beam pi+ production uncertainties. ?
- None of these are expected to have any appreciable effect above 475 MeV

Possible Sources of Additional Single Gamma Backgrounds

- Processes that remove/absorb one of the gammas from a ν_μinduced NC π⁰ → γγ
 - Photonuclear absorption was missing from our GEANT3 detector Monte Carlo
 - But tends to give extra final state particles.
 - Reduces size of excess
 - Systematics being calculated
 - No effect above 475 MeV

Distance to Wall Backward Cut

 u_{μ}

dirt

·07

In low energy region there is a significant background from neutrino interactions in the dirt

Gamma conversion length = 70 cm

Dirt events tend to be at large radius, heading inward Add a new cut on "DistancetoWall backward" to reduce these.

Has significant effect below 475 MeV

- Big reduction in dirt
- Some reduction of $\pi^0 s$
- Small effect on $\nu_e s$

Has almost no effect above 475 MeV

Comparing Neutrino/Antineutrino Low Energy ν_e Candidates

The v_e background breakdown is very similar between neutrino and antineutrino mode running

But different hypotheses for the excess can have measurably different effects in the two modes

Can compare the two modes to test some of the hypotheses

Axial Anomaly- an explanation within the standard model

- Recent paper by Harvey &Hill^{2,} hep-ph 0708.1281 ,0712.1230 has put forth an explanation of the MiniBooNE low energy electron excess by employing the axial anomaly.
- The anomaly is employed to create a (ν_{μ},γ) process that mimics (ν_{e},e)

Wine and cheese FL Feb 29,08

The low energy limit cross section with no proton recoil is

$$\sigma = \frac{\alpha g_{\omega}^4 G_F^2}{480\pi^6 m_{\omega}^4} E_{\nu}^6 = 2.2(10)^{-41} \left(\frac{E_{\nu}}{\text{GeV}}\right)^6 \left(\frac{g_{\omega}}{10}\right)^4$$

$$g_{\omega} \text{ can vary from 10 - 30.}$$

$$\sim 140 (g_{\omega}/10)^4 \text{ events}$$
Use photon energy and angle to examine this Byron Roe

Apr. 17, 08

21

Gauge Boson in Nelson and Walsh

- arXiv:0711.1363, "Short Baseline Neutrino Oscillations and a New Light Gauge Boson", Ann Nelson & Jonathan Walsh.
- An MSW-like potential in matter which affects low E neutrino oscillations makes LSND and MB compatible, while obtaining a low energy anomaly about 40% of that seen by MB.

Gauge Boson in Nelson and Walsh 2

- The new light gauge vector boson ("paraphoton") has a mass of ~10 keV (short range to avoid 5th force measurements) and a coupling strength of g2/e2~ 10-9 coupling to B-L charge
- Because of low coupling strength, authors thought boson undetectable.
- BR(P -> vv) ~ 100%, BR(P->γγγ) ~ 10-7. Lifetime ~2.5 ns.

But--MB has LOTS of POT

- The paraphotons can be produced by hadronic bremsstrahlung of the incident proton beam(~1%)
 [X10-9] in the forward direction (~5-10mr) in inclusive reactions
- Assume PID & Fiducial Volume efficiency ~ 30%, and look for em shower
- Assume 50 cm radiation length ·Number of radiation lengths in MB ~ 5m/50cm = 10 [X10-9]
- See of the order of 10-20 events in the forward direction.

Examination of our present forward events is underway, but will need more events for definitive answer.

 Main point is that MiniBooNE can do very sensitive searches for a variety of rare processes

Events from NuMI detected at MiniBooNE

Nuance Parameters (v_{μ} CCQE)

Kinetic Energy of muon

QE

 ν_{μ} NC Elastic

Results (from 10% nu sample):

- NC elastic diff. cross section (per nucleon, n+p averaged, flux averaged)
- Flux Integrated Cross-Section = 8.8 ±0.6(stat) ±2.0(syst) x10⁻⁴⁰ cm²
- Measured axial mass (NC) = 1.34 +0.38-0.25 GeV

- further analysis on full nu data set and with goal of reducing systematic errors in progress (D. Perevalov, Alabama)
- eventual analysis goal: NC/CCQE ratio measurement and antinu data

(D.C. Cox)

NC Pi0 reconstruction unsmearing

Fig. 1. Top: Results of the π^0 unsmearing in bins of momentum. The dark points show the unsmeared data π^0 momentum distribution and the light points show the uncorrected MC π^0 momentum distribution. The unsmeared data error bars contain all sources of error propagated through the unsmearing, while the MC error bars are from finite MC statistics. Bottom: The reweighing function, formed by taking ratio of the two points above (data/MC).

Apr. 17, 08

NC π^0

Fig. 4. The coherent fraction in the Rein and Seghal based MC vs. neutrino energy compared to this measurement. The solid line only includes carbon interactions, while the dotted line includes scattering off hydrogen with diffractive events counted as part of the coherent. The measured value is shown with error bars which indicate the total error on the measurement (vertical) and the spread in the participating neutrino energy distribution. The shaded distribution is MC energy for neutrinos which produce exclusive NC π^0 events in MiniBooNE with arbitrary normalization.

• developed a new 3-ring fitter (μ + $\gamma\gamma$) for this new σ_{ν} analysis

- provides a means to test a pure resonant single-π sample (w/ no coherent π contribution)
- 31,755 events

(R. Nelson)

Apr. 17, 08

Antineutrino Cross Sections

- shown at Moriond in March.
- 1,744 events (plus, will be taking more data in v mode soon)
 (V. Nguyen)

Coherent fraction (from fit) disagrees with Rein-Sehgal

• direct way to check predicted rate and energy dependence of ν backgrounds in $\overline{\nu}$ mode ______(J. Nowak)

Publications:

A.A. Aguilar-Arevalo et. Al.:

0707.0926, PRL 98, 231801 (2007) Oscillation search

0706.0926, PRL 100, 032301 (2008) numu CCQE

0706.3897, showing mu internal bremsstrahlung small

0803.3423, submitted to PL, neutral current pi0 prod.

In draft form within the collaboration: 3 NIM papers--Flux, Detector, and Reconstruction 3 others--combined limits, NUMI/MB, improved osc fit

9 further physics papers in various stages of progress At least 8 more contemplated

BACKUP

Smearing induced by moving nucleon target

Two Analysis Chains

For most of analysis had two equal reconstructions, sfitter, rfitter

- Toward end of analysis, a new more powerful reconstruction based on sfitter—the pfitter (TB) became available. Better especially on 2 track fits (22 cm position error, 2.8° 1 track angle error, ~20 MeV π⁰ mass resolution)—BUT takes about 10 times more computer time.
- sfitter and pfitter retained.

Event Classification Schemes for Oscillation Measurement

- Signal events were defined as v_e CCQE events. From Evis and angle -->Enu
- Pfitter used simple cuts (TB--"Track based analysis") to separate these events based on:
 a. Likelihood of 1 track e-fit vs 1 track μ-fit
 - b. Likelihood of 1 track e-fit vs 2 track fit
 - c. Mass of gamma-gamma in 2 track fit (pi0)

Separating e from π^0

- Extend fit to include two e-like tracks
- Very tenacious fit...8 minutes per event
- Nearly 1M CPU hours used (thanks OSG!)

0.05j

-0.05

Byron Roe

TBL Analysis: Separating e from μ

etc.

Give higher weight to misclassified events and make new "boosted tree". Continue 100's of times; sum results of each tree: 1 if signal leaf, -1 if background leaf Apr. 17, 08 Byron Roe 45

Neutral Current Single Pi0 Production coherent fraction=19.5%

FIG. 3: Monte Carlo overlay of the template fitted π^0 data in a) $m_{\gamma\gamma}$ invariant mass, and b) $E_{\pi}(1 - \cos \theta_{\pi})$.

Is MiniBooNE and LSND consistent if there are One, Two or Three Sterile Neutrinos ?

- Michael Maltoni, arXiv:0711.2018
- Parameter goodness of fit (PG) test to appearance and disappearance datasets from MiniBooNE, LSND, KARMEN and NOMAD experiments.

PG = 4.0×10^{-6} for (3+1 sterile v) model

PG = 4.8×10^{-5} for (3+2 sterile v) model

Severe tension between different datasets. With present experimental results, (3+1), (3+2) and (3+3) neutrino oscillation schemes is NOT possible to explain the LSND signal in terms of sterile neutrinos.
 MiniBooNE preparing own examination including systematic errors and bin-to-bin correlations

Sterile Neutrinos That Take Shortcuts in Extra Dimensions

- Prior to MiniBooNE's first result, it was put forward that sterile neutrinos can take shortcuts in extra dimensions.
- (Päs, Pakvasa, Weiler, Phys.Rev. D72 095017, 2005)
 - A resonance in active-sterile neutrino oscillations arises from an increase in the path-length of active neutrinos relative to sterile neutrinos in the bulk.
 - Below the resonance, the standard oscillation formulas apply.
 - Above the resonance, active-sterile oscillations are suppressed.
 - A resonance energy in the range of 30– 400 MeV allows an explanation of all neutrino oscillation data, including LSND data in a 3+1 model
 - And this model can evade the problems with the Bugey and CDHS limits.
 - This paper predicted that a significant oscillation signal would only be seen in MiniBooNE at low energy.

Schematic representation of a periodically curved brane in Minkowski spacetime.

Apr. 17, 08

Particle Identification

No major discrepancy in Particle Identification

Muon Misidentification (including muon internal bremsstrahlung)

Data-MC excess, but note the scale!

3000

1500

Apply reconstruction and particle identification to clean sample muon CCQE events (muon decay visible).

700

0.12

0.10

Events / MeV 90.0 90.04

0.02

300

500

Then scale normalization to account for how often the second subevent is missing

900

1100

Reconstructed E. (MeV)

1300

What results is a direct measurement and MC prediction for almost all the rate at which events with a final state muon enter the ν_e background

Update on the low E excess...

Apr. 17, 08

Detector Anomalies or Reconstruction Problems

No Detector anomalies found

- Example: rate of electron candidate events is constant (within errors) over course of run

No Reconstruction problems found

 All low-E electron candidate events have been examined via event displays, consistent with 1-ring events

Signal candidate events are consistent with single-ring neutrino interactions ⇒ But could be either electrons or photons

energy/angle distributions in E_v bins

Apr. 17, 08

 $\cos \theta$ bins

Other Distributions UZ, Radius, RtoWall, etc.

With rtw(1)>300..and.rtw(2)>100.

=> Events distributed throughout tank, no indication of edge effects.

Apr. 17, 08

"Dirt" background

- Dirt background is due to ν interactions outside detector creating neutrals that enter tank
- **Measured** in "dirt-enhanced" samples:
 - before box-opening, fit predicted: 1.00±0.15
 - in different (open) sample, a fit says that meas/pred is 1.08±0.12.
- Shape of visible E and distance-to-wall distributions are well-described by MC

dirt

 ν_{μ}

CCQE Cross Section

 v_l l w^+ p

- CCQE reaction is used to search for oscillations
- Cross section industry is booming
 - Data is pouring in from expts
 - Monte Carlo Generators
 - NUANCE, NEUGEN, NEUT, NUX ...
 - Low energy σ_v soon to be included in Durham database

QE

Anti-neutrinos

Upper left : $\log(L_e/L_\mu)$ Lower left : $\log(L_e/L_\pi)$ Upper right : π^0 momentum $\overline{v_\mu} = 61.8\%, v_\mu = 35.7\%, \overline{v_e} + v_e = 2.45\%$